Search results for " proteins"

showing 10 items of 9071 documents

Cryo-EM structure of ssDNA bacteriophage ΦCjT23 provides insight into early virus evolution.

2022

AbstractThe origin of viruses remains an open question. While lack of detectable sequence similarity hampers the analysis of distantly related viruses, structural biology investigations of conserved capsid protein structures facilitate the study of distant evolutionary relationships. Here we characterize the lipid-containing ssDNA temperate bacteriophage ΦCjT23, which infects Flavobacterium sp. (Bacteroidetes). We report ΦCjT23-like sequences in the genome of strains belonging to several Flavobacterium species. The virion structure determined by cryogenic electron microscopy reveals similarities to members of the viral kingdom Bamfordvirae that currently consists solely of dsDNA viruses wit…

/631/326/1321bacteriophagesviruksetcryoelectron microscopyevoluutioGeneral Physics and AstronomyelektronimikroskopiaDNA Single-Stranded/45/23FlavobacteriumGeneral Biochemistry Genetics and Molecular Biologybakteriofagit/631/45/535/1258/1259viral evolution/631/326/596/2554BacteriophagesMultidisciplinaryfylogenia/45fylogenetiikkaCryoelectron Microscopy/101/28articleGeneral Chemistryperimä1182 Biochemistry cell and molecular biologyCapsid Proteins
researchProduct

MD Simulation Investigation on the Binding Process of Smoke-Derived Germination Stimulants to Its Receptor

2019

Karrikins (KARs) are a class of smoke-derived seed germination stimulants with great significance in both agriculture and plant biology. By means of direct binding to the receptor protein KAI2, the compounds can initiate the KAR signal transduction pathway, hence triggering germination of the dormant seeds in the soil. In the research, several molecular dynamics (MD) simulation techniques were properly integrated to investigate the binding process of KAR1 to KAI2 and reveal the details of the whole binding event. The calculated binding free energy, -7.00 kcal/mol, is in good agreement with the experimental measurement, -6.83 kcal/mol. The obtained PMF profile indicates the existence of thre…

010304 chemical physicsProtein ConformationChemistryGeneral Chemical EngineeringGerminationGeneral ChemistryPlasma protein bindingMolecular Dynamics SimulationLibrary and Information SciencesLigand (biochemistry)01 natural sciences0104 chemical sciencesComputer Science Applications010404 medicinal & biomolecular chemistryMolecular dynamicsProtein structure0103 physical sciencesMoleBiophysicsThermodynamicsMoleculeSignal transductionReceptorPlant ProteinsProtein BindingJournal of Chemical Information and Modeling
researchProduct

Toxicity and Binding Studies of Bacillus thuringiensis Cry1Ac, Cry1F, Cry1C, and Cry2A Proteins in the Soybean Pests Anticarsia gemmatalis and Chryso…

2017

ABSTRACT Anticarsia gemmatalis (velvetbean caterpillar) and Chrysodeixis includens (soybean looper, formerly named Pseudoplusia includens ) are two important defoliating insects of soybeans. Both lepidopteran pests are controlled mainly with synthetic insecticides. Alternative control strategies, such as biopesticides based on the Bacillus thuringiensis (Bt) toxins or transgenic plants expressing Bt toxins, can be used and are increasingly being adopted. Studies on the insect susceptibilities and modes of action of the different Bt toxins are crucial to determine management strategies to control the pests and to delay outbreaks of insect resistance. In the present study, the susceptibilitie…

0106 biological sciences0301 basic medicine030106 microbiologyBacillus thuringiensissoya pestMothsChrysodeixis01 natural sciencesApplied Microbiology and BiotechnologyMicrobiologyHemolysin Proteins03 medical and health sciencesBacterial ProteinsBacillus thuringiensisChrysodeixis includensBotanyheterologous competitionAnimalsPest Control BiologicalCry proteinssoybean looperPlant DiseasesBacillus thuringiensis ToxinsEcologybiologybusiness.industryfungiPest controlfood and beveragesbiology.organism_classificationEndotoxins010602 entomologyBiopesticideAnticarsia gemmatalisCry1AcPseudoplusiaLarvavelvetbean caterpillarSoybeansbusinessFood ScienceBiotechnologyApplied and Environmental Microbiology
researchProduct

The targeted overexpression of SlCDF4 in the fruit enhances tomato size and yield involving gibberellin signalling

2020

AbstractTomato is one of the most widely cultivated vegetable crops and a model for studying fruit biology. Although several genes involved in the traits of fruit quality, development and size have been identified, little is known about the regulatory genes controlling its growth. In this study, we characterized the role of the tomato SlCDF4 gene in fruit development, a cycling DOF-type transcription factor highly expressed in fruits. The targeted overexpression of SlCDF4 gene in the fruit induced an increased yield based on a higher amount of both water and dry matter accumulated in the fruits. Accordingly, transcript levels of genes involved in water transport and cell division and expans…

0106 biological sciences0301 basic medicineAgricultural geneticsCell divisionPlant molecular biologyMolecular biologyTranscriptional regulatory elementsPlant physiologyBiotecnologia agrícolalcsh:MedicineMolecular engineering in plantsPlantesBiology01 natural sciencesArticle03 medical and health sciencesSolanum lycopersicumPlant hormonesDry matterlcsh:ScienceGeneTranscription factorRegulator genePlant ProteinsMultidisciplinaryWater transportlcsh:RGenètica vegetalfood and beveragesGibberellinsUp-Regulation02.- Poner fin al hambre conseguir la seguridad alimentaria y una mejor nutrición y promover la agricultura sostenibleRepressor ProteinsHorticulturePlant BreedingGENETICA030104 developmental biologyFruitGibberellinlcsh:QPlant biotechnologyFISIOLOGIA VEGETALSink (computing)Plant sciences010606 plant biology & botanyBiotechnologySignal Transduction
researchProduct

PGDH family genes differentially affect Arabidopsis tolerance to salt stress

2019

The first step in the Phosphorylated Pathway of serine (Ser) Biosynthesis (PPSB) is catalyzed by the enzyme Phosphoglycerate Dehydrogenase (PGDH), coded in Arabidopsis thaliana by three genes. Gene expression analysis indicated that PGDH1 and PGDH2 were induced, while PGDH3 was repressed, by salt-stress. Accordingly, PGDH3 overexpressing plants (Oex PGDH3) were more sensitive to salinity than wild type plants (WT), while plants overexpressing PGDH1 (Oex PGDH1) performed better than WT under salinity conditions. Oex PGDH1 lines displayed lower levels of the salt-stress markers proline and raffinose in roots than WT under salt-stress conditions. Besides, the ratio of oxidized glutathione (GSS…

0106 biological sciences0301 basic medicineArabidopsisPlant SciencePlant Roots01 natural sciencesSerine03 medical and health scienceschemistry.chemical_compoundBiosynthesisGene Expression Regulation PlantArabidopsisGene expressionGeneticsArabidopsis thalianaPhosphoglycerate dehydrogenaseProlinePhosphoglycerate DehydrogenasebiologyArabidopsis ProteinsWild typeSalt ToleranceGeneral Medicinebiology.organism_classification030104 developmental biologychemistryBiochemistryMultigene FamilyAgronomy and Crop Science010606 plant biology & botanyPlant Science
researchProduct

Recombinant laccase from Pediococcus acidilactici CECT 5930 with ability to degrade tyramine

2017

Biogenic amines degradation by bacterial laccases is little known, so we have cloned and heterologously expressed, in E. coli, a new laccase from Pediococcus acidilactici CECT 5930 (Lpa5930), a lactic acid bacterium commonly found in foods able to degrade tyramine. The recombinant enzyme has been characterized by physical and biochemical assays. Here we report the optimization of expression and purification procedures of this laccase. DNA encoding sequence of laccase from P. acidilactici was amplified by PCR and cloned into the expression plasmid pET28a for induction by isopropyl-β-D-thiogalactoipyranoside. Protein expression was performed in E. coli BL21(DE3) harboring pGro7 plasmid expres…

0106 biological sciences0301 basic medicineArabinoseMolecular biologylcsh:MedicineLaccasesBiochemistryBiotecnologia01 natural sciencesSubstrate Specificitylaw.inventionDatabase and Informatics Methodschemistry.chemical_compoundlawRecombinant Protein PurificationCloning MolecularAmineslcsh:Sciencechemistry.chemical_classificationMultidisciplinaryABTSbiologyOrganic CompoundsTemperatureHydrogen-Ion ConcentrationTyramineRecombinant ProteinsEnzymesChemistryRecombination-Based AssayBiochemistryPhysical SciencesRecombinant DNAElectrophoresis Polyacrylamide GelOxidation-ReductionSequence AnalysisResearch ArticleProtein PurificationBioinformaticsTyramineLibrary ScreeningDNA constructionResearch and Analysis Methods03 medical and health sciencesBacterial ProteinsSequence Motif Analysis010608 biotechnologyAmino Acid SequenceBenzothiazolesPediococcus acidilacticiLaccaseMolecular Biology Assays and Analysis TechniquesBase SequenceMolecular massLaccaseOrganic Chemistrylcsh:RChemical CompoundsBiology and Life SciencesProteinsPediococcus acidilacticiSequence Analysis DNAbiology.organism_classificationMolecular biology techniques030104 developmental biologyEnzymechemistryPlasmid ConstructionEnzymologySpectrophotometry Ultravioletlcsh:QSulfonic AcidsEnzimsProteïnesPurification TechniquesPLOS ONE
researchProduct

Survival and gene expression under different temperature and humidity regimes in ants

2017

Short term variation in environmental conditions requires individuals to adapt via changes in behavior and/or physiology. In particular variation in temperature and humidity are common, and the physiological adaptation to changes in temperature and humidity often involves alterations in gene expression, in particular that of heat-shock proteins. However, not only traits involved in the resistance to environmental stresses, but also other traits, such as immune defenses, may be influenced indirectly by changes in temperature and humidity. Here we investigated the response of the ant F. exsecta to two temperature regimes (20 degrees C & 25 degrees C), and two humidity regimes (50% & 75%), for…

0106 biological sciences0301 basic medicineAtmospheric ScienceympäristöAcclimatizationGene Expressionlcsh:MedicinemuutosALFALFA LEAFCUTTING BEEBiochemistryImmune Receptors01 natural sciencesEndocrinologyACCLIMATIONmuurahaisetGene expressionMedicine and Health SciencesIMMUNE-RESPONSEInsulinTRANSCRIPTIONgeeniekspressiolcsh:SciencePOPULATIONHeat-Shock ProteinsProtein MetabolismsopeutuminenPrincipal Component Analysiseducation.field_of_studyImmune System ProteinsMultidisciplinaryBehavior AnimalEcologyolosuhteetTemperaturefood and beveragesANThumanitiesInsectsimmuunijärjestelmä1181 Ecology evolutionary biologyPhysical SciencesMEGACHILE-ROTUNDATAlämpötilaympäristönmuutoksetResearch ArticleNutrient and Storage ProteinsSignal TransductionArthropodaImmunologyPopulationZoologyBiology010603 evolutionary biologyAcclimatization03 medical and health sciencesMeteorologyTwo temperatureStress PhysiologicalGeneticsAnimalseducationGeneProportional Hazards ModelsDiabetic EndocrinologyAntsBEAUVERIA-BASSIANAGene Expression Profilinglcsh:ROrganismshumidityBiology and Life SciencesProteinsHumiditytemperatureHumidityEigenvaluesCell BiologyDESICCATIONInvertebratesHymenopteraHormonesMetabolismAlgebra030104 developmental biologyGene Expression RegulationLinear AlgebraDROSOPHILA-MELANOGASTERkosteusEarth Sciencesgene expressionta1181lcsh:QFormica exsectaDesiccationRESISTANCEMathematics
researchProduct

Interaction Between ABA Signaling and Copper Homeostasis inArabidopsis thaliana

2016

ABA is involved in plant responses to non-optimal environmental conditions, including nutrient availability. Since copper (Cu) is a very important micronutrient, unraveling how ABA affects Cu uptake and distribution is relevant to ensure adequate Cu nutrition in plants subjected to stress conditions. Inversely, knowledge about how the plant nutritional status can interfere with ABA biosynthesis and signaling mechanisms is necessary to optimize stress tolerance in horticultural crops. Here the reciprocal influence between ABA and Cu content was addressed by using knockout mutants and overexpressing transgenic plants of high affinity plasma membrane Cu transporters (pmCOPT) with altered Cu up…

0106 biological sciences0301 basic medicineBiologiaTranscription GeneticPhysiologyMutantArabidopsisPlant ScienceGenetically modified cropsSodium ChlorideGenes PlantPlant Roots01 natural sciencesGene Knockout Techniques03 medical and health scienceschemistry.chemical_compoundGene Expression Regulation PlantStress PhysiologicalArabidopsisHomeostasisArabidopsis thalianaPlantes Cèl·lules i teixitsAbscisic acidTranscription factorbiologyArabidopsis ProteinsMembrane transport proteinorganic chemicalsfungiMembrane Transport Proteinsfood and beveragesCell BiologyGeneral Medicinebiology.organism_classificationCell biologyOxidative StressPhenotype030104 developmental biologychemistryMutationbiology.proteinSignal transductionCopperAbscisic AcidSignal Transduction010606 plant biology & botanyPlant and Cell Physiology
researchProduct

Essentiality Is a Strong Determinant of Protein Rates of Evolution during Mutation Accumulation Experiments in Escherichia coli

2016

[EN] The Neutral Theory of Molecular Evolution is considered the most powerful theory to understand the evolutionary behavior of proteins. One of the main predictions of this theory is that essential proteins should evolve slower than dispensable ones owing to increased selective constraints. Comparison of genomes of different species, however, has revealed only small differences between the rates of evolution ofessential and nonessential proteins. In some analyses, these differences vanish once confounding factors are controlled for, whereas in other cases essentiality seems to have an independent, albeit small, effect. It has been argued that comparing relatively distant genomes may entai…

0106 biological sciences0301 basic medicineBiologymedicine.disease_cause010603 evolutionary biology01 natural sciencesGenomeProtein evolutionEvolution Molecular03 medical and health sciencesGeneticsmedicineEscherichia colidN/dSProtein lengthEscherichia coliGeneEcology Evolution Behavior and Systematics2. Zero hungerGeneticsExperimental evolutionGenes EssentialModels GeneticEscherichia coli ProteinsGene Expression Regulation BacterialRates of evolutionMutation AccumulationNeutral theoryEssentiality030104 developmental biologyExperimental evolutionMutationNeutral theory of molecular evolutionGenome BacterialResearch Article
researchProduct

Characterization of the Copper Transporters from Lotus spp. and Their Involvement under Flooding Conditions

2019

Forage legumes are an important livestock nutritional resource, which includes essential metals, such as copper. Particularly, the high prevalence of hypocuprosis causes important economic losses to Argentinian cattle agrosystems. Copper deficiency in cattle is partially due to its low content in forage produced by natural grassland, and is exacerbated by flooding conditions. Previous results indicated that incorporation of Lotus spp. into natural grassland increases forage nutritional quality, including higher copper levels. However, the biological processes and molecular mechanisms involved in copper uptake by Lotus spp. remain poorly understood. Here, we identify four genes that encode p…

0106 biological sciences0301 basic medicineBiologíalegumesLotusCOPPERFLOODING01 natural scienceslcsh:ChemistryCopper transportersProtein-fragment complementation assayCation Transport Proteinslcsh:QH301-705.5SpectroscopyPlant Proteinsbiologyfood and beveragesGeneral MedicinePhenotypeComputer Science ApplicationsLEGUMESSaccharomyces cerevisiaechemistry.chemical_elementCatalysisArticleInorganic Chemistry03 medical and health sciencesfloodingStress PhysiologicalFORAGEBotanymedicineCiencias AgrariasPhysical and Theoretical ChemistryMolecular BiologyGeneOrganic Chemistryfungiforagebiology.organism_classificationmedicine.disease//purl.org/becyt/ford/4.5 [https]CopperTRANSPORTERScopper transportersYeastFloods030104 developmental biologychemistrylcsh:Biology (General)lcsh:QD1-999CIENCIAS AGRÍCOLASLotusOtras Ciencias AgrícolasCopper deficiency//purl.org/becyt/ford/4 [https]Copper010606 plant biology & botanyInternational Journal of Molecular Sciences
researchProduct